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Abstract The present problem is concerned with the study of deformation of a
rotating generalized thermoelastic medium with a hydrostatic initial stress. A linear
temperature ramping function is used to more realistically model thermal loading of
the half-space surface. The components of displacement, force stress, and tempera-
ture distribution are obtained in the Laplace and Fourier domains by applying integral
transforms. The general solution obtained is applied to a specific problem of a half-
space subjected to ramp-type heating and loading. These components are then obtained
in the physical domain by applying a numerical inversion method. Some particular
cases are also discussed in the context of the problem. The results are also presented
graphically to show the effect of rotation and hydrostatic initial stress.
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τ0, ϑ0 Thermal relaxation times
υ = (3λ+ 2µ) αt Linear thermal expansion
e = div�u Dilatation
K • Coefficient of thermal conductivity
CE Specific heat
t0 Ramping parameter
p Initial pressure
η Initial stress parameter
E Young’s modulus
σ Poisson ratio

1 Introduction

Generalized thermoelasticity theories have been developed with the objective of
removing the paradox of infinite speed of heat propagation inherent in the conventional
coupled dynamical theory of thermoelasticity in which the parabolic type heat con-
duction equation is based on Fourier’s law of heat conduction. This newly emerged
theory, which admits a finite speed of heat propagation, is now referred to as the
hyperbolic thermoelasticity theory [1], as the heat equation for a rigid conductor is a
hyperbolic-type differential equation.

There are two important generalized theories of thermoelasticity. The first is due
to Lord and Shulman [2]. The second generalization to the coupled theory of ther-
moelasticity is what is known as the theory of thermoelasticity with two relaxation
times or the theory of temperature-rate-dependent thermoelasticity. Muller [3], in a
review of the thermodynamics of a thermoelastic solid, proposed an entropy produc-
tion inequality, with the help of which he consider restrictions on a class of constitutive
equations. A generalization of this inequality was proposed by Green and Laws [4].
Green and Lindsay (G–L) [5] obtained another version of the constitutive equations.
These equations were also obtained independently and more explicitly by Suhubi [6].
This theory contains two constants that act as relaxation times and modify all the
equations of the coupled theory, and not only the heat equations. The classical Fourier
law was violated if the medium under consideration has a center of symmetry.

Barber and Martin-Moran [7] discussed Green’s functions for transient thermoelas-
tic contact problems for the half-plane. Barber [8] studied thermoelastic displacements
and stresses due to a heat source moving over the surface of a half-plane. Sherief [9]
obtained components of stress and temperature distributions in a thermoelastic medium
due to a continuous source. Dhaliwal et al. [10] investigated thermoelastic interactions
caused by a continuous line heat source in a homogeneous isotropic unbounded solid.
Chandrasekharaiah and Srinath [11] studied thermoelastic interactions due to a con-
tinuous point heat source in a homogeneous and isotropic unbounded body. Sharma
et al. [12] investigated the disturbance due to a time-harmonic normal point load in
a homogeneous isotropic thermoelastic half-space. Sharma and Chauhan [13] dis-
cussed mechanical and thermal sources in a generalized thermoelastic half-space.
Sharma et al. [14] investigated the steady-state response of an applied load moving
with constant speed for an infinite long time over the top surface of a homogeneous
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thermoelastic layer lying over an infinite half-space. Recently, Deswal and Choudh-
ary [15] studied a two-dimensional problem due to a moving load in a generalized
thermoelastic solid with diffusion.

The development of initial stresses in the medium is due to many reasons, for exam-
ple, resulting from differences of temperature, process of quenching, shot pinning and
cold working, slow process of creep, differential external forces, gravity variations,
etc. The earth is assumed to be under high initial stresses. It is, therefore, of much
interest to study the influence of these stresses on the propagation of stress waves.
Biot [16] showed the acoustic propagation under initial stresses, which is fundamen-
tally different from that under a stress-free state. He has obtained the velocities of
longitudinal and transverse waves along the co-ordinate axis only.

The wave propagation in solids under initial stresses has been studied by many
authors for various models. The study of reflection and refraction phenomena of plane
waves in an unbounded medium under initial stresses is due to Chattopadhyay et al.
[17], Sidhu and Singh [18], and Dey et al. [19]. Montanaro [20] investigated the iso-
tropic linear thermoelasticity with a hydrostatic initial stress. Singh et al. [21], Singh
[22], and Othman and Song [23] studied the reflection of thermoelastic waves from
a free surface under a hydrostatic initial stress in the context of different theories of
generalized thermoelasticity.

Misra et al. [24] studied the magneto-thermoelastic interaction in an aeolotropic
solid cylinder subject to ramp-type heating. Misra et al. [25] studied thermoelastic
interactions in an elastic half-space subjected to ramp-type heating. Youssef [26] con-
structed a model of the dependence of the modulus of elasticity and the thermal con-
ductivity on the reference temperature and solved the problem of an infinite material
with a spherical cavity. Youssef [27] studied the two-dimensional generalized ther-
moelasticity problem for a half-space subjected to ramp-type heating. Youssef [28]
studied the problem of a generalized thermoelastic infinite medium with a cylindri-
cal cavity subjected to ramp-type heating and loading. Youssef and Al-Harby [29]
investigated a state-space approach of two-temperature generalized thermoelasticity
of an infinite body with a spherical cavity subjected to different types of thermal
loading. Youssef [30] investigated the two-dimensional problem of a two-temperature
generalized thermoelastic half-space subjected to ramp-type heating.

Some researchers in the past have investigated a different problem of rotating media.
Chand et al. [31] presented an investigation on the distribution of deformation, stresses,
and magnetic field in a uniformly rotating homogeneous isotropic, thermally and elec-
trically conducting elastic half-space. Numerous authors [32–34] studied the effect of
rotation on elastic waves. Roychoudhuri and Mukhopadhyay [35] studied the effect
of rotation and relaxation times on plane waves in generalized thermo-viscoelasticity.
Ting [36] investigated the interfacial waves in a rotating anisotropic elastic half-space.
Sharma and his co-workers [37–40] discussed the effect of rotation on a different
type of waves propagating in a thermoelastic medium. Othman and Song [41,42] pre-
sented the effect of rotation in magneto-thermoelastic medium. Ailawalia and Narah
[43] discussed the effect of rotation due to a moving load at the interface of an elastic
half-space and a generalized thermoelastic half-space.

In the present investigation, we have obtained the expressions for displacement,
force stress, and temperature distribution in a rotating generalized thermoelastic
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medium with a hydrostatic initial stress by applying Laplace and Fourier transforms
subjected to ramp-type heating and loading. Such types of problems in the rotating
medium are very important in many dynamical systems. Some particular cases are
also derived from the present investigation.

2 Formulation of the Problem

We consider a homogeneous generalized thermoelastic half-space with a hydrostatic
initial stress rotating uniformly with an angular velocity �	 = 	n̂, where n̂ is a unit
vector representing the direction of the axis of rotation. A ramp-type source acting at
the plane surface of a generalized thermoelastic half-space with a hydrostatic initial
stress is considered.

3 Basic Equations and Their Solutions

The constitutive relations and field equations in generalized linear thermoelasticity
with a initial hydrostatic stress and without body forces and heat sources are given by
Lord and Shulman [2], Green and Lindsay [5], and Montanaro [20] as

ti j = −p
(
δi j + ωi j

) + 2µei j + λeδi j − υ

(
1 + ϑ0

∂

∂t

)
T, (1)

ei j = 1

2

(
ui, j + u j,i

)
, (2)

ωi j = 1

2

(
u j,i − ui, j

)
, (3)

(
µ− p

2

)
ui,kk +

(
λ+ µ+ p

2

)
uk,ik − υ

(
1 + ϑ0

∂

∂t

)
T,i = ρüi . (4)

The heat conduction equation is given by

K ∗
(

n∗ + t1
∂

∂t

)
T,i i = ρCE

(
n1
∂

∂t
+ τ0

∂2

∂t2

)
T + υT0

(
n1
∂

∂t
+ n0τ0

∂2

∂t2

)
ui,i .

(5)

The equation of motion in a rotating frame of reference has two additional terms: (i)

centripetal acceleration �	×
( �	× �u

)
due to time varying motion only and (ii) coriolis

acceleration 2 �	× �̇u. So, Eq. 4 can be modified in the rotating medium as

(
µ− p

2

)
ui,kk+

(
λ+µ+ p

2

)
uk,ik−υ

(
1+ϑ0

∂

∂t

)
T,i=ρ

[
üi+

{ �	×
( �	× �u

)}

i

+
(

2 �	× �̇u
)

i

]
. (6)
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For a two-dimensional problem (xy−plane), all quantities depends only on space coor-
dinates x, y, and time t ; hence, the components of displacement and angular velocity
are

�u = (u1, u2, 0) , �	 = (0, 0,	) . (7)

Using Eq. 7 in Eq. 6, the equations of motion in two dimensions are given by

(λ + 2µ)
∂2u1

∂x2 +
(
λ+ µ+ p

2

) ∂2u2

∂x∂y
+

(
µ− p

2

) ∂2u1

∂y2 − υ

(
1 + ϑ0

∂

∂t

)
∂T

∂x

= ρ

[
∂2u1

∂t2 −	2u1 − 2	
∂u2

∂t

]
, (8)

(λ + 2µ)
∂2u2

∂y2 +
(
λ+ µ+ p

2

) ∂2u1

∂x∂y
+

(
µ− p

2

) ∂2u2

∂x2 − υ

(
1 + ϑ0

∂

∂t

)
∂T

∂y

= ρ

[
∂2u2

∂t2 −	2u2 + 2	
∂u1

∂t

]
. (9)

Introducing dimensionless variables defined by

x ′
i = ω∗

c0
xi , u′

i = ρc0ω
∗

υT0
ui , t ′ = ω∗t, τ ′

0 = ω∗τ0, ϑ
′
0 = ω∗ϑ0, T ′ = T

T0
,

t ′i j = ti j

υT0
,	′ = 	

ω∗ , p′ = p

υT0
, (10)

whereω∗ = ρCE c2
0/K ∗ and ρc2

0 = λ+2µ in Eqs. 5, 8, and 9, we obtain the equations
of motion in dimensionless form.

We define displacement potentials φ and ψ , which are related to displacement
components u1 and u2 as

u1 = ∂φ

∂x
− ∂ψ

∂y
, u2 = ∂φ

∂y
+ ∂ψ

∂x
, (11)

in the resulting dimensionless equations, and then applying the Laplace and Fourier
transform defined by

f̄ (x, y, s) =
∞∫

0

f (x, y, t)e−st dt, (12)

f̃ (ξ, y, s) =
∞∫

−∞
f̄ (x, y, s) eiξ x dx, (13)
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we get, (after neglecting the primes),

[
d2

dy2 − ξ2 +	2 − s2
]
φ̃ + 2	sψ̃ − (1 + ϑ0s) T̃ = 0, (14)

[
d2

dy2 − ξ2 + a1	
2 − a1s2

]
ψ̃ − 2	a1sφ̃ = 0, (15)

[
d

dy2 − ξ2 − s

(
n1 + τ0s

n• + t1s

)]
T̃ − n1 + τ0n0s

n• + t1s
(εs)

[
d

dy2 − ξ2
]
φ̃ = 0. (16)

Eliminating φ̃ and ψ̃ from Eqs. 14–16, we obtain

[
∇6 − A∇4 + B∇2 − C

]
φ̃ = 0, (17)

where

∇ = d

dy
, a1 = ρc2

0

µ− vT0 p
2

, ∈= υ2T0

ρK ∗ω∗ , e1 = ξ2 + s

(
n1 + τ0s

n• + t1s

)
,

e2 = ξ2 −	2 + s2, e3 = εs (1 + ϑ0s)

(
n1 + n0τ0s

n• + t1s

)
,

e4 = ξ2 − a1	
2 + a1s2,

A = e1 + e2 + e3 + e4,

B = e4 (e1 + e2 + e3)+ e1e2 + e3ξ
2 + 4a1	

2s2,

C = e4

(
e1e2 + e3ξ

2
)

+ 4e1a1s2	2. (18)

The solutions of Eq. 17 satisfying the radiation conditions that φ̃, ψ̃, T̃ → 0 as
y → ∞ are

φ̃ = D1e−φ1 y + D2e−φ2 y + D3e−φ3 y, (19)

ψ̃ = a∗
1 D1e−φ1 y + a∗

2 D2e−φ2 y + a∗
3 D3e−φ3 y, (20)

T̃ = b∗
1 D1e−φ1 y + b∗

2 D2e−φ2 y + b∗
3 D3e−φ3 y, (21)

where φ2
i are the roots of the characteristic Eq. 17 and a∗

i , b∗
i are coupling constants

defined by

a∗
i = φ4

i − (e1 + e2 + e3) φ
2
i + (

e1e2 + e3ξ
2
)

2	s
(
φ2

i − e1
) , (22)

b∗
i = εs

(
n1 + n0τ0s

n• + t1s

) (
φ2

i − ξ2

φ2
i − e1

)

, i = 1, 2, 3. (23)

123



2084 Int J Thermophys (2009) 30:2078–2097

4 Boundary Conditions

4.1 Mechanical Force

The boundary conditions at the plane surface y = 0 are

(i) t22 = F (x, t) =
⎡

⎣
0 t ≤ 0
σ1

t
t0

0 < t ≤ t0
σ1 t > t0

(ii) t21 = 0, (24)

(iii) T = 0.

Using Eqs. 1, 7, 10, and 11 in the boundary conditions (Eq. 24), we obtain the
boundary conditions in dimensionless form. On suppressing the primes and applying
the Laplace and Fourier transforms defined by Eqs. 12 and 13 on the dimensionless
boundary conditions and using Eqs. 19–21 in the resulting transformed boundary con-
ditions, we get the transformed expressions for displacement, force stress, and temper-
ature distribution in a rotating generalized thermoelastic medium with a hydrostatic
initial stress as

ũ1 =
(∑3

m=1 bm�me−φm y
)

�
, (25)

ũ2 =
(∑3

m=1 lm�me−φm y
)

�
, (26)

t̃21 =
(∑3

m=1 qm�me−φm y
)

�
, (27)

t̃22 =
(∑3

m=1 rm�me−φm y
)

�
, (28)

T̃ =
(∑3

m=1 b•
m�me−φm y

)

�
, (29)

where

� =
[

r1�1 + r2�2 + r3�3

p − F̃ (ξ, s)

]
,�1 =

(
p − F̃ (ξ, s)

) [
q2b•

3 − b•
2q3

]
,

�2 = −
(

p − F̃ (ξ, s)
) [

q1b•
3 − b•

1q3
]
,

�3 =
(

p − F̃ (ξ, s)
) [

q1b•
2 − b•

1q2
]
,

qi = −
⎡

⎣

(
µ− υT0 p

2

)
a•

i φ
2
i

ρc2
0

+
(
µ+ υT0 p

2

)
a•

i ξ
2

ρc2
0

− 2iξµφi

ρc2
0

⎤

⎦
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ri = φ2
i − λξ2

ρc2
0

+ 2iξµa•
i φi

ρc2
0

− (1 + ϑ0s) b•
i , i = m = 1, 2, 3.

bi = a•
i φi − iξ, li = − (

a•
i iξ + φi

)
, F̃ (ξ, s) = σ1

p2t0

(
1 − e−st0

)
. (30)

4.2 Thermal Source

The boundary conditions at the plane surface y = 0 subjected to a thermal source are

(i) t22 = 0,
(ii) t21 = 0,

(iii) T = H (x, t) =
⎡

⎣
0 t ≤ 0
T1

t
t0

0 < t ≤ t0
T1 t > t0

.

For the case of a thermal source, the expressions for displacement, force stress, and
temperature distribution are obtained by replacing �m by �•

m in Eqs. 25–29, where

�•
1 = p

(
q2b•

3 − b•
2q3

) + H̃ (ξ, s) (r2q3 − q2r3) ,

�•
2 = −p

(
q1b•

3 − b•
1q3

) − H̃ (ξ, s) (r1q3 − q1r3) ,

�•
3 = p

(
q1b•

2 − b•
1q2

) + H̃ (ξ, s) (r1q2 − q1r2) ,

H̃ (ξ, s) = T1

s2t0

(
1 − e−st0

)
. (31)

5 Particular Cases

5.1 Neglecting the Angular Velocity

Neglecting the angular velocity (i.e., �	 = 0), we obtain transformed components of
displacement, stress forces, and temperature distribution in a non-rotating generalized
thermoelastic medium with a hydrostatic initial stress as

ũ1 =
(∑3

m=1 b′
m�

(1)
m e−φ′

m y
)

�(1)
, (32)

ũ2 =
(∑3

m=1 l ′m�
(1)
m e−φ′

m y
)

�(1)
, (33)

t̃21 =
(∑3

m=1 q ′
m�

(1)
m e−φ′

m y
)

�(1)
, (34)

t̃22 =
(∑3

m=1 r ′
m�

(1)
m e−φ′

m y
)

�(1)
, (35)
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T̃ =
(∑3

m=1 b′•
m�

(1)
m e−φ′

m y
)

�(1)
, (36)

where

�(1) = r ′
3

�
(1)
3

p − F̃ (ξ, s)
− q ′

3

(
r ′

1b′•
2 − b′•

1 r ′
2

)
,�

(1)
1 = −

[
p − F̃ (ξ, s)

]
b′•

2 q ′
3,

�
(1)
2 =

[
p − F̃ (ξ, s)

]
b′•

1 q ′
3,�

(1)
3 =

[
p − F̃ (ξ, s)

] [
q ′

1b′•
2 − b′•

1 q ′
2

]
,

r ′
1,2 = φ′2

1,2 − λξ2

ρc2
0

− (1 + ϑ0 p) b′•
1,2, r

′
3 = 2µiξφ′

3

ρc2
0

, b′
1,2 = −iξ, b′

3 = φ′
3,

q ′
1,2 = 2iξµφ′

1,2

ρc2
0

, q ′′
3 = −

⎡

⎣

(
µ− υT0 p

2

)
φ′2

3

ρc2
0

+
(
µ+ υT0 p

2

)
ξ2

ρc2
0

⎤

⎦ ,

l ′1,2 = −φ′
1,2, l

′
3 = −iξ,

b′•
1,2 = φ′2

1,2 − e′
2

1 + ϑ0s
, A1 = e1 + e′

2 + e3, B1 =
(

e1e′
2 + e3ξ

2
)
,

φ′
1,2 = A1 ± √

A1 − 4B1

2
, φ′2

3 = ξ2 + ρc2
0s2

(
µ− υT0 p

2

) , e′
2 = ξ2 + s2. (37)

5.1.1 Thermal Source

In this case, the expressions for displacement, force stress, and temperature distribution
are reduced by replacing �(1)m by �•(1)

m in Eqs. 32– 36, where

�
•(1)
1 = −pb′•

2 q ′
3+H̃ (ξ, s)

(
r ′

2q ′
3 − q ′

2r ′
3

)
,�

•(1)
2 = pb′•

1 q ′
3−H̃ (ξ, s)

(
r ′

1q ′
3 − q ′

1r ′
3

)
,

�
•(1)
3 = p

(
q ′

1b′•
2 − b′•

1 q ′
2

) + H̃ (ξ, s)
(
r ′

1q ′
2 − q ′

1r ′
2

)
.

5.2 Neglecting Angular Velocity and Hydrostatic Initial Stress

Neglecting both angular velocity and hydrostatic initial stress (i.e., �	 = p = 0), we
get the expressions for displacement, force stresses, and temperature distribution in a
non-rotating thermoelastic medium as

ũ1 =
(∑3

m=1 b′′
m�

(2)
m e−φ′′

m y
)

�(2)
, (38)

ũ2 =
(∑3

m=1 l ′′m�
(2)
m e−φ′′

m y
)

�(2)
, (39)
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t̃21 =
(∑3

m=1 q ′′
m�

(2)
m e−φ′′

m y
)

�(2)
, (40)

t̃22 =
(∑3

m=1 r ′′
m�

(2)
m e−φ′′

m y
)

�(2)
, (41)

T̃ =
(∑2

m=1 b′′•
m �

(2)
m e−φ′′

m y
)

�(2)
, (42)

where

�(2) = −
[

r ′′
3�

(2)
3

F̃ (ξ, s)
+ q ′′

3

(
r ′′

1 b′′•
2 − b′′•

1 r ′′
2

)
]

, �
(2)
1 = F̃ (ξ, s) b′′•

2 q ′′
3 ,

�
(2)
2 = −�

(2)
1 b′′•

1

b′′•
2

, �
(2)
3 = −F̃ (ξ, s)

[
q ′′

1 b′′•
2 − b′′•

1 q ′′
2

]
,

A2 = e1 + e′
2 + e3, B2 = e1e′

2 + e3ξ
2, (43)

φ′′2
1,2 =

A2 ±
√

A2
2 − 4B2

2
, φ′′2

3 = ξ2 + s2ρc2
0

µ
, b′′•

1,2 = φ′′2
1,2 − e′

2

1 + ϑ0s
,

r ′′
1,2 = φ′′2

1,2 − λξ2

ρc2
0

− (1 + ϑ0 p) b′′•
1,2, r ′′

3 = 2µiξφ′′
3

ρc2
0

,

q ′′
1,2 = 2iξµφ′′

1,2

ρc2
0

, s′′
3 = −

(
φ′′2

3 + ξ2
)
µ

ρc2
0

,

b′′
1,2 = −iξ, b′′

3 = φ′′
3 , l ′′1,2 = −φ′′

1,2, l ′′3 = −iξ.

5.2.1 Thermal Source

We obtained the expressions for displacement, force stress, and temperature distribu-
tion by replacing �(2)m by �•(2)

m in Eqs. 38– 42 for ramp-type heating, where

�
•(2)
1 = H̃ (ξ, s)

(
r ′′

2 q ′′
3 − q ′′

2 r ′′
3

)
,�

•(2)
2 = −H̃ (ξ, s)

(
r ′′

1 q ′′
3 − q ′′

1 r ′′
3

)
,

�
•(2)
3 = H̃ (ξ, s)

(
r ′′

1 q ′′
2 − q ′′

1 r ′′
2

)
.

5.3 Neglecting Hydrostatic Initial Stress

Neglecting hydrostatic initial stress (i.e., p = 0), we obtain transformed components
of displacement, stress forces, and temperature distribution in a rotating generalized
thermoelastic medium.
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6 Numerical Results

With a view to illustrating the analytical procedure presented earlier, we now consider
a numerical example for which computational results are given. The results depict the
variations of temperature, displacement, and stress fields in the context of the G–L
theory. For this purpose, we take the following values of physical constants as

E = 36.9 × 1010 N · m−2, σ = 0.33, ρ = 2.7 × 103 kg · m−3,

CE = 0.9878 × 103 J · kg−1 · ◦C−1

K∗ = 2.059 × 103 J · m−1 · ◦C−1, ν = α

ρKT
, α = 0.01,KT = 0.5,T0 = 20 ◦C

µ = E

2η (1 + σ)
, λ = Eσ

η (1 + σ) (1 − 2σ)
.

η = 1 corresponds to an isotropic elastic medium.
The computations are carried out on the surface y = 1.0 at t = 1.0 for two values of

ramping parameters t0(0.1 and 0.5). The graphical results for the normal displacement
u2, the normal force stress t22, and temperature distribution T are shown in Figs. 1 to
12 with 	 = 0.5 and p = 1.0 for a

(a) generalized thermoelastic medium with a hydrostatic initial stress and rotation
(GTESHR) by solid line ( ),

(b) generalized thermoelastic medium with a hydrostatic initial stress and without
rotation (GTESHWR) by dashed line ( ),

(c) generalized thermoelastic medium with rotation and without a hydrostatic initial
stress (GTESR) by solid line with centered symbol ( ), and

(d) generalized thermoelastic solid without rotation and without a hydrostatic initial
stress (GTESWR) by dashed line with centered symbol ( ).

These graphical results represent the solutions obtained by using the generalized
theory with two relaxation times (G–L-theory by taking τ0 = 0.03, ϑ0 = 0.05.)

7 Inversion of the Transform

The transformed displacements, microrotation, and stresses are functions of y, the
parameters of Laplace and Fourier transforms s and ξ , respectively, and hence are of
the form f̃ (ξ, y, s). To get the function in the physical domain, first we invert the
Fourier transform and then the Laplace transform by using the method applied by
Sharma and Kumar [44].
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Fig. 1 Variation of normal displacement u2 with horizontal distance x for a mechanical force and t0 = 0.1:
( ) GTESHR—generalized thermoelastic medium with a hydrostatic initial stress and rotation,
( ) GTESR—generalized thermoelastic medium with rotation and without a hydrostatic initial
stress, ( ) GTESHWR—generalized thermoelastic medium with a hydrostatic initial stress and with-
out rotation, and ( ) GTESWR—generalized thermoelastic solid without rotation and without a
hydrostatic initial stress

Fig. 2 Variation of normal force stress t22 with horizontal distance x for a mechanical force and t0 = 0.1:
( ) GTESHR, ( ) GTESR, ( ) GTESHWR, and ( ) GTESWR [see
Fig. 1 for explanation of symbols]
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Fig. 3 Variation of temperature distribution T with horizontal distance x for a mechanical force and t0 =
0.1: ( ) GTESHR, ( ) GTESR, ( ) GTESHWR, and ( ) GTESWR
[see Fig. 1 for explanation of symbols]

Fig. 4 Variation of normal displacement u2with horizontal distance x for a thermal source and t0 = 0.1:
( ) GTESHR, ( ) GTESR, ( ) GTESHWR, and ( ) GTESWR [see
Fig. 1 for explanation of symbols]
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Fig. 5 Variation of normal force stress t22with horizontal distance x for a thermal source and t0 = 0.1:
( ) GTESHR, ( ) GTESR, ( ) GTESHWR, and ( ) GTESWR [see
Fig. 1 for explanation of symbols]

Fig. 6 Variation of temperature distribution T with horizontal distance x for a thermal source and t0 = 0.1:
( ) GTESHR, ( ) GTESR, ( ) GTESHWR, and ( ) GTESWR [see
Fig. 1 for explanation of symbols]
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Fig. 7 Variation of normal displacement u2with horizontal distance x for a mechanical force and t0 = 0.5:
( ) GTESHR, ( ) GTESR, ( ) GTESHWR, and ( ) GTESWR [see
Fig. 1 for explanation of symbols]

Fig. 8 Variation of normal force stress t22with horizontal distance x for a mechanical force and t0 = 0.5:
( ) GTESHR, ( ) GTESR, ( ) GTESHWR, and ( ) GTESWR [see
Fig. 1 for explanation of symbols]
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Fig. 9 Variation of temperature distribution T with horizontal distance x for a mechanical force and t0 =
0.5: ( ) GTESHR, ( ) GTESR, ( ) GTESHWR, and ( ) GTESWR
[see Fig. 1 for explanation of symbols]

Fig. 10 Variation of normal displacement u2with horizontal distance x for a thermal source and t0 = 0.5:
( ) GTESHR, ( ) GTESR, ( ) GTESHWR, and ( ) GTESWR [see
Fig. 1 for explanation of symbols]
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Fig. 11 Variation of normal force stress t22with horizontal distance x for a thermal source and t0 = 0.5:
( ) GTESHR, ( ) GTESR, ( ) GTESHWR, and ( ) GTESWR [see
Fig. 1 for explanation of symbols]

Fig. 12 Variation of temperature distribution T with horizontal distance x for a thermal source and t0 = 0.5:
( ) GTESHR, ( ) GTESR, ( ) GTESHWR, and ( ) GTESWR [see
Fig. 1 for explanation of symbols]
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8 Special Cases of Thermoelasticity Theory

8.1 Equations of Coupled thermoelasticity

The equations of the coupled thermoelasticity (C-T theory) for a rotating media are
obtained when

n∗ = n1 = 1, t1 = τ0 = ϑ0 = 0. (44)

8.2 Lord–Shulman Theory

For the Lord–Shulman (L–S theory),

n∗ = n1 = n0 = 1, t1 = ϑ0 = 0, τ0 > 0. (45)

8.3 Green–Lindsay Theory

For the Green–Lindsay (G–L theory),

n∗ = n1 = 1, n∗ = 0, t1 = 0, ϑ0 ≥ τ0 > 0, (46)

where ϑ0, τ0 are two relaxation times.

8.4 Equations of Generalized Thermoelasticity

The equations of generalized thermoelasticity for a rotating medium, without energy
dissipation (the linearized GN theory of type II) are obtained when

n∗ > 0, n1 = 0, n0 = 1, t1 = ϑ0 = 0, τ0 = 1, (47)

Equations 1 and 4 are the same, and Eq. 5 takes the form,

K ∗∇2T = ρCE
∂2T

∂t2 + υT0
∂2e

∂t2 , (48)

where n∗ is a constant, which has the dimension of
[ 1

s

]
, and n∗k∗ = K ′ =

CE (λ+ 2µ) /4 is a characteristic constant of this theory.

9 Discussion

9.1 Mechanical Force with Ramping Parameter t0 = 0.1

The values of the normal displacement in the case of a generalized thermoelastic
medium are highly oscillatory in nature when both the hydrostatic initial stress and
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angular velocity are neglected. For the case of a hydrostatic initial stress and (or)
angular velocity, the values of the normal displacement lie in a very short range.
These variations of normal displacement are shown in Fig. 1.

It is observed from Fig. 2 that the values of the normal force stress also lie in a short
range if either the hydrostatic initial stress or angular velocity is neglected. However,
for a thermoelastic medium with a hydrostatic initial stress and angular velocity, these
variations are oscillatory to a significant effect. The variations of the temperature
distribution for the medium (in the absence of a hydrostatic initial stress or angu-
lar velocity) are similar in nature with oscillatory behavior. Also, the variations are
oscillatory with a decreasing magnitude when the medium is not under the effect of a
hydrostatic initial stress and rotation. These variations of the temperature distribution
are shown in Fig. 3.

9.2 Thermal Source with Ramping Parameter t0 = 0.1

When a thermal source is acting on the surface of a generalized thermoelastic medium,
the variations of the normal displacement and normal force stress are more uniform
in nature as compared to the variations obtained on application of a mechanical force.
We may observe from Figs. 4 and 5 that the variations of both these quantities are
quite similar in nature when the medium is rotating with some angular velocity (with
or without a hydrostatic initial stress). Similar to the discussions given above, the
variations of the temperature distribution depicted in Fig. 6 are almost identical for a
rotating generalized thermoelastic medium.

On changing the values of the ramping parameter t0, we observe similar behavior of
all the quantities with some difference in magnitude. We have shown these variations
in Figs. 7 to 12 by taking the value of the ramping parameter t0 = 0.5.

10 Conclusion

A significant effect of the hydrostatic initial stress and angular velocity is observed on
all the quantities. Also, the nature of the source (mechanical and thermal) affects the
nature of all quantities. The body is deformed to a large extent when a thermal source is
applied on the surface of the medium, since all the quantities have been de-magnified
by a factor (103 to 104).
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